3.5.42 \(\int \frac {x (a+b \cosh ^{-1}(c x))^n}{\sqrt {d-c^2 d x^2}} \, dx\) [442]

Optimal. Leaf size=182 \[ \frac {e^{-\frac {a}{b}} \sqrt {-1+c x} \sqrt {1+c x} \left (a+b \cosh ^{-1}(c x)\right )^n \left (-\frac {a+b \cosh ^{-1}(c x)}{b}\right )^{-n} \Gamma \left (1+n,-\frac {a+b \cosh ^{-1}(c x)}{b}\right )}{2 c^2 \sqrt {d-c^2 d x^2}}-\frac {e^{a/b} \sqrt {-1+c x} \sqrt {1+c x} \left (a+b \cosh ^{-1}(c x)\right )^n \left (\frac {a+b \cosh ^{-1}(c x)}{b}\right )^{-n} \Gamma \left (1+n,\frac {a+b \cosh ^{-1}(c x)}{b}\right )}{2 c^2 \sqrt {d-c^2 d x^2}} \]

[Out]

1/2*(a+b*arccosh(c*x))^n*GAMMA(1+n,(-a-b*arccosh(c*x))/b)*(c*x-1)^(1/2)*(c*x+1)^(1/2)/c^2/exp(a/b)/(((-a-b*arc
cosh(c*x))/b)^n)/(-c^2*d*x^2+d)^(1/2)-1/2*exp(a/b)*(a+b*arccosh(c*x))^n*GAMMA(1+n,(a+b*arccosh(c*x))/b)*(c*x-1
)^(1/2)*(c*x+1)^(1/2)/c^2/(((a+b*arccosh(c*x))/b)^n)/(-c^2*d*x^2+d)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.14, antiderivative size = 182, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, integrand size = 27, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.111, Rules used = {5952, 3388, 2212} \begin {gather*} \frac {e^{-\frac {a}{b}} \sqrt {c x-1} \sqrt {c x+1} \left (a+b \cosh ^{-1}(c x)\right )^n \left (-\frac {a+b \cosh ^{-1}(c x)}{b}\right )^{-n} \text {Gamma}\left (n+1,-\frac {a+b \cosh ^{-1}(c x)}{b}\right )}{2 c^2 \sqrt {d-c^2 d x^2}}-\frac {e^{a/b} \sqrt {c x-1} \sqrt {c x+1} \left (a+b \cosh ^{-1}(c x)\right )^n \left (\frac {a+b \cosh ^{-1}(c x)}{b}\right )^{-n} \text {Gamma}\left (n+1,\frac {a+b \cosh ^{-1}(c x)}{b}\right )}{2 c^2 \sqrt {d-c^2 d x^2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(x*(a + b*ArcCosh[c*x])^n)/Sqrt[d - c^2*d*x^2],x]

[Out]

(Sqrt[-1 + c*x]*Sqrt[1 + c*x]*(a + b*ArcCosh[c*x])^n*Gamma[1 + n, -((a + b*ArcCosh[c*x])/b)])/(2*c^2*E^(a/b)*S
qrt[d - c^2*d*x^2]*(-((a + b*ArcCosh[c*x])/b))^n) - (E^(a/b)*Sqrt[-1 + c*x]*Sqrt[1 + c*x]*(a + b*ArcCosh[c*x])
^n*Gamma[1 + n, (a + b*ArcCosh[c*x])/b])/(2*c^2*Sqrt[d - c^2*d*x^2]*((a + b*ArcCosh[c*x])/b)^n)

Rule 2212

Int[(F_)^((g_.)*((e_.) + (f_.)*(x_)))*((c_.) + (d_.)*(x_))^(m_), x_Symbol] :> Simp[(-F^(g*(e - c*(f/d))))*((c
+ d*x)^FracPart[m]/(d*((-f)*g*(Log[F]/d))^(IntPart[m] + 1)*((-f)*g*Log[F]*((c + d*x)/d))^FracPart[m]))*Gamma[m
 + 1, ((-f)*g*(Log[F]/d))*(c + d*x)], x] /; FreeQ[{F, c, d, e, f, g, m}, x] &&  !IntegerQ[m]

Rule 3388

Int[((c_.) + (d_.)*(x_))^(m_.)*sin[(e_.) + Pi*(k_.) + (f_.)*(x_)], x_Symbol] :> Dist[I/2, Int[(c + d*x)^m/(E^(
I*k*Pi)*E^(I*(e + f*x))), x], x] - Dist[I/2, Int[(c + d*x)^m*E^(I*k*Pi)*E^(I*(e + f*x)), x], x] /; FreeQ[{c, d
, e, f, m}, x] && IntegerQ[2*k]

Rule 5952

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*(x_)^(m_.)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[(1/(b*
c^(m + 1)))*Simp[(d + e*x^2)^p/((1 + c*x)^p*(-1 + c*x)^p)], Subst[Int[x^n*Cosh[-a/b + x/b]^m*Sinh[-a/b + x/b]^
(2*p + 1), x], x, a + b*ArcCosh[c*x]], x] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ[c^2*d + e, 0] && IGtQ[2*p + 2
, 0] && IGtQ[m, 0]

Rubi steps

\begin {align*} \int \frac {x \left (a+b \cosh ^{-1}(c x)\right )^n}{\sqrt {d-c^2 d x^2}} \, dx &=\frac {\left (\sqrt {-1+c x} \sqrt {1+c x}\right ) \int \frac {x \left (a+b \cosh ^{-1}(c x)\right )^n}{\sqrt {-1+c x} \sqrt {1+c x}} \, dx}{\sqrt {d-c^2 d x^2}}\\ &=\frac {\left (\sqrt {-1+c x} \sqrt {1+c x}\right ) \text {Subst}\left (\int (a+b x)^n \cosh (x) \, dx,x,\cosh ^{-1}(c x)\right )}{c^2 \sqrt {d-c^2 d x^2}}\\ &=\frac {\left (\sqrt {-1+c x} \sqrt {1+c x}\right ) \text {Subst}\left (\int e^{-x} (a+b x)^n \, dx,x,\cosh ^{-1}(c x)\right )}{2 c^2 \sqrt {d-c^2 d x^2}}+\frac {\left (\sqrt {-1+c x} \sqrt {1+c x}\right ) \text {Subst}\left (\int e^x (a+b x)^n \, dx,x,\cosh ^{-1}(c x)\right )}{2 c^2 \sqrt {d-c^2 d x^2}}\\ &=\frac {e^{-\frac {a}{b}} \sqrt {-1+c x} \sqrt {1+c x} \left (a+b \cosh ^{-1}(c x)\right )^n \left (-\frac {a+b \cosh ^{-1}(c x)}{b}\right )^{-n} \Gamma \left (1+n,-\frac {a+b \cosh ^{-1}(c x)}{b}\right )}{2 c^2 \sqrt {d-c^2 d x^2}}-\frac {e^{a/b} \sqrt {-1+c x} \sqrt {1+c x} \left (a+b \cosh ^{-1}(c x)\right )^n \left (\frac {a+b \cosh ^{-1}(c x)}{b}\right )^{-n} \Gamma \left (1+n,\frac {a+b \cosh ^{-1}(c x)}{b}\right )}{2 c^2 \sqrt {d-c^2 d x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.17, size = 153, normalized size = 0.84 \begin {gather*} \frac {e^{-\frac {a}{b}} \sqrt {\frac {-1+c x}{1+c x}} (1+c x) \left (a+b \cosh ^{-1}(c x)\right )^n \left (-\frac {\left (a+b \cosh ^{-1}(c x)\right )^2}{b^2}\right )^{-n} \left (-e^{\frac {2 a}{b}} \left (-\frac {a+b \cosh ^{-1}(c x)}{b}\right )^n \Gamma \left (1+n,\frac {a}{b}+\cosh ^{-1}(c x)\right )+\left (\frac {a}{b}+\cosh ^{-1}(c x)\right )^n \Gamma \left (1+n,-\frac {a+b \cosh ^{-1}(c x)}{b}\right )\right )}{2 c^2 \sqrt {-d (-1+c x) (1+c x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(x*(a + b*ArcCosh[c*x])^n)/Sqrt[d - c^2*d*x^2],x]

[Out]

(Sqrt[(-1 + c*x)/(1 + c*x)]*(1 + c*x)*(a + b*ArcCosh[c*x])^n*(-(E^((2*a)/b)*(-((a + b*ArcCosh[c*x])/b))^n*Gamm
a[1 + n, a/b + ArcCosh[c*x]]) + (a/b + ArcCosh[c*x])^n*Gamma[1 + n, -((a + b*ArcCosh[c*x])/b)]))/(2*c^2*E^(a/b
)*Sqrt[-(d*(-1 + c*x)*(1 + c*x))]*(-((a + b*ArcCosh[c*x])^2/b^2))^n)

________________________________________________________________________________________

Maple [F]
time = 180.00, size = 0, normalized size = 0.00 \[\int \frac {x \left (a +b \,\mathrm {arccosh}\left (c x \right )\right )^{n}}{\sqrt {-c^{2} d \,x^{2}+d}}\, dx\]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x*(a+b*arccosh(c*x))^n/(-c^2*d*x^2+d)^(1/2),x)

[Out]

int(x*(a+b*arccosh(c*x))^n/(-c^2*d*x^2+d)^(1/2),x)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(a+b*arccosh(c*x))^n/(-c^2*d*x^2+d)^(1/2),x, algorithm="maxima")

[Out]

integrate((b*arccosh(c*x) + a)^n*x/sqrt(-c^2*d*x^2 + d), x)

________________________________________________________________________________________

Fricas [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(a+b*arccosh(c*x))^n/(-c^2*d*x^2+d)^(1/2),x, algorithm="fricas")

[Out]

integral(-sqrt(-c^2*d*x^2 + d)*(b*arccosh(c*x) + a)^n*x/(c^2*d*x^2 - d), x)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {x \left (a + b \operatorname {acosh}{\left (c x \right )}\right )^{n}}{\sqrt {- d \left (c x - 1\right ) \left (c x + 1\right )}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(a+b*acosh(c*x))**n/(-c**2*d*x**2+d)**(1/2),x)

[Out]

Integral(x*(a + b*acosh(c*x))**n/sqrt(-d*(c*x - 1)*(c*x + 1)), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(a+b*arccosh(c*x))^n/(-c^2*d*x^2+d)^(1/2),x, algorithm="giac")

[Out]

integrate((b*arccosh(c*x) + a)^n*x/sqrt(-c^2*d*x^2 + d), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {x\,{\left (a+b\,\mathrm {acosh}\left (c\,x\right )\right )}^n}{\sqrt {d-c^2\,d\,x^2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x*(a + b*acosh(c*x))^n)/(d - c^2*d*x^2)^(1/2),x)

[Out]

int((x*(a + b*acosh(c*x))^n)/(d - c^2*d*x^2)^(1/2), x)

________________________________________________________________________________________